Abstract
We present a fermionic description of non-equilibrium multi-level systems. Our approach uses the Keldysh path integral formalism and allows us to take into account periodic drives, as well as dissipative channels. The technique is based on the Majorana fermion representation of spin-1/2 models which follows earlier applications in the context of spin and Kondo systems. We apply this formalism to problems of increasing complexity: a dissipative two-level system, a driven-dissipative multi-level atom, and a generalized Dicke model describing many multi-level atoms coupled to a single cavity. We compare our theoretical predictions with recent QED experiments and point out the features of a counter-lasing transition. Our technique provides a convenient and powerful framework for analyzing driven-dissipative quantum systems, complementary to other approaches based on the solution of Lindblad master equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.