Abstract

We derive a curved space generalization of a scalar to fermion decay rate with a Yukawa coupling in expanding Friedmann–Robertson–Walker universes. This is done using the full theory of quantum fields in curved spacetime and the added-up transition probability method. It is found that in an expanding universe the usual Minkowskian decay rates are considerably modified for early times. For conformally coupled scalars the decay rate is modified by a positive additive term proportional to the inverse of mass and related to the expansion rate of the Universe. We compare and contrast our results with previous studies on scalar to scalar decay and find that in general the decay channel into fermions is the dominant channel of decay in the very early Universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.