Abstract

We generalize the fermion Chern-Simons theory for the fractional Hall effect, which we developed before, to the case of bilayer systems. We study the complete dynamic rsponse of these systems and predict the experimentally accessible optical properties. In general, for the so-called (m,m,n) states, we find that the spectrum of collective excitations has a gap, and the wave function has the Jastrow-Slater form, with the exponents determined by the coefficients m and n. We also find that the (m,m,m) states, i.e., those states whose filling fraction is 1/m, have a gapless mode that may be related to the spontaneous appearance of the interlayer coherence. Our results also indicate that the gapless mode makes a contribution to the wave function of the (m,m,m) i.e., states analogous to the phonon contribution to the wave function of superfluid ${\mathrm{He}}_{4}$. We calculate the Hall conductance, and the charge and statistics of the quasiparticles. We also present an SU(2) generalization of this theory relevant to spin-unpolarized or partially polarized single layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.