Abstract

Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein–Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.