Abstract

We examine the properties of a one-dimensional (1D) Fermi gas with attractive intrinsic (Hubbard) interactions in the presence of spin-orbit coupling and Zeeman field by numerically computing the pair binding energy, excitation gap, and susceptibility to local perturbations using the density matrix renormalization group. Such a system can, in principle, be realized in a system of ultracold atoms confined in a 1D optical lattice. We note that, in the presence of spatial interfaces introduced by a smooth parabolic potential, the pair binding and excitation energy of the system decays exponentially with the system size, pointing to the existence of an exponential ground state degeneracy, and is consistent with recent works. However, the susceptibility of the ground state degeneracy of this number-conserving system to local impurities indicates that the energy gap vanishes as a power law with the system size in the presence of local perturbations. We compare this system with the more familiar system of an Ising antiferromagnet in the presence of a transverse field realized with Rydberg atoms and argue that the exponential splitting in the clean number-conserving 1D Fermi system is similar to a phase with only conventional order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.