Abstract

We investigate formation and condensation of fermion pairs in cold-atom quantum simulators for extended Hubbard models (UV models) with body-centered-cubic (BCC) optical lattices in the dilute limit, predicting small and light pairs. Pair mass, radius, and binding conditions are calculated, and used to compute transition temperatures. We predict that: (a) local pairs form in BCC optical lattices and binding energies can be large; (b) for particular cases where onsite U and intersite V are attractive with similar size, pairs are both small and light; and (c) pairs of 6Li atoms Bose–Einstein condense at temperatures of around 10 nK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.