Abstract

We performed angle-resolved photoemission spectroscopy with micro-focused beam on a topological line-nodal compound CaSb2 which undergoes a superconducting transition at the onset Tc~1.8 K, to clarify the Fermi-surface topology relevant to the occurrence of superconductivity. We found that a three-dimensional hole pocket at the G point is commonly seen for two types of single-crystalline samples fabricated by different growth conditions. On the other hand, the carrier-doping level estimated from the position of the chemical potential was found to be sensitive to the sample fabrication condition. The cylindrical electron pocket at the Y(C) point predicted by the calculations is absent in one of the two samples, despite the fact that both samples commonly show superconductivity with similar Ts's. This suggests a key role of the three-dimensional hole pocket to the occurrence of superconductivity, and further points to an intriguing possibility to control the topological nature of superconductivity by carrier tuning in CaSb2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.