Abstract

Fermi transport of spinors can be precisely understood in terms of two-spinor geometry. By using a partly original, previously developed treatment of two-spinors and classical fields, we describe the family of all transports, along a given one-dimensional timelike submanifold of spacetime, which yield the standard Fermi transport of vectors. Moreover, we show that this family has a distinguished member, whose relation to the Fermi transport of vectors is similar to the relation between the spinor connection and spacetime connection. Various properties of the Fermi transport of spinors are discussed, and applied to the construction of free electron states for a detector-dependent QED formalism introduced in a previous paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.