Abstract

Ground state energies and superfluid gaps are calculated for degenerate Fermi systems interacting via long attractive scattering lengths such as cold atomic gases, neutron and nuclear matter. In the intermediate region of densities, where the interparticle spacing $(\sim 1/k_F)$ is longer than the range of the interaction but shorter than the scattering length, the superfluid gaps and the energy per particle are found to be proportional to the Fermi energy and thus differs from the dilute and high density limits. The attractive potential increase linearly with the spin-isospin or hyperspin statistical factor such that, e.g., symmetric nuclear matter undergoes spinodal decomposition and collapses whereas neutron matter and Fermionic atomic gases with two hyperspin states are mechanically stable in the intermediate density region. The regions of spinodal instabilities in the resulting phase diagram are reduced and do not prevent a superfluid transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call