Abstract

The nesting of electron Fermi pocket with one of the two hole pockets around the Brillouin zone center has been attributed to the spin density wave (SDW) instability in the parent compound of superconducting iron pnictides. We propose here that the second hole Fermi pocket may be nested with the electron pocket in the doped case, which results in a new SDW instability. Our work is motivated by and may explain the recent scanning tunneling spectroscopy (STM) measurements on NaFe1−xCoxAs, which show an asymmetric gap-like feature near the Fermi level in the overdoped regime (Zhou X. et al., Phys. Rev. Lett., 109 (2012) 037002). We use a multi-band model to examine this feature within random phase approximation to include the coupling between the itinerant electron and the local spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call