Abstract

The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.