Abstract

The problem of determining a metal’s Fermi surface from measured projections of the electron or electron/positron momentum densities, such as those obtained by Compton scattering or angular correlation of positron annihilation radiation, respectively, is examined in a Bayesian formulation. A consistent approach with an explicit treatment of the Fermi surface already at the reconstruction stage is presented, and its advantages compared to previous practice are discussed. A validation of the proposed method on simulated data shows its systematic accuracy to be very satisfactory and its statistical precision on modest experimental data to be surprisingly good.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.