Abstract

We succeeded in growing high-quality single crystals of pyrite-type cubic compounds CoSe2 and CoS2 using a transport agent of CoBr2 and measured the electrical resistivity, specific heat, magnetic susceptibility, magnetization, and the de Haas–van Alphen (dHvA) effect. We confirmed that CoSe2 is an exchange-enhanced paramagnet revealing a broad maximum at around 50 K in the temperature dependence of the magnetic susceptibility. The electronic specific heat coefficient is moderately large, γ = 18 mJ/(K2·mol). On the other hand, CoS2 is a ferromagnet with a Curie temperature TC = 122 K and an ordered moment μs = 0.93 μB/Co. The γ value of 21 mJ/(K2·mol) in CoS2 is slightly larger than that of CoSe2. A large ordered moment, together with a large γ value, is a characteristic feature in CoS2 because CoS2 is a half-metallic spin state in the ferromagnetic state. Correspondingly, we detected a main dHvA branch with a large cyclotron effective mass of 13m0 in the dHvA experiments. The detected dHvA branches in CoS2 and CoSe2 are discussed on the basis of the results of energy band calculations, revealing a broken four-fold-symmetry in the angular dependence of the dHvA frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.