Abstract

Mode selectivity is a well-established concept in chemical dynamics. A polyatomic molecule possesses multiple vibrational modes and the mechanical couplings between them can result in complicated anharmonic motions that defy a simple oscillatory description. A prototypical example of this is Fermi-coupled vibration, in which an energy-split eigenstate executes coherent nuclear motion that is comprised of the constituent normal modes with distinctive phases. Will this vibrational phase affect chemical reactivity? How can this phase effect be disentangled from more classical amplitude effects? Here, to address these questions, we study the reaction of Cl with a pair of Fermi states of CH3D(v1-I and v1-II). We find that the reactivity ratio of (v1-I)/(v1-II) in forming the CH2D(v = 0) + HCl(v) products deviates significantly from that permitted by the conventional reactivity-borrowing framework. Based on a proposed metric, this discrepancy can only be explained when the scattering interferences mediated by the CH3D vibrational phases are explicitly considered, which expands the concept of vibrational control of chemical reactivity into the quantum regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call