Abstract

Thermalization in nonlinear systems is a central concept in statistical mechanics and has been extensively studied theoretically since the seminal work of Fermi, Pasta, and Ulam. Using molecular dynamics and continuum modeling of a ring-down setup, we show that thermalization due to nonlinear mode coupling intrinsically limits the quality factor of nanomechanical graphene drums and turns them into potential test beds for Fermi-Pasta-Ulam physics. We find the thermalization rate Γ to be independent of radius and scaling as Γ∼T*/εpre2, where T* and εpre are effective resonator temperature and prestrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call