Abstract

Understanding the alignment of molecular orbitals and corresponding transmission peaks with respect to the Fermi level of the electrodes is a major challenge in the field of molecular electronics. In order to design functional devices, it is of utmost importance to assess whether controlled changes in the electronic structure of isolated compounds are preserved once they are inserted in the molecular junctions. Here, light is shed on this central issue by performing density functional theory calculations on junctions including diarylethene‐based molecules. It is demonstrated that the chemical potential equalization principle allows to rationalize the existence or not of a Fermi level pinning (i.e., same alignment in spite of a varying ionization potential in the isolated compounds), pointing to the essential role played by metal induced gap states (MIGS). It is further evidenced that the degree of level pinning is intimately linked to the degree of orbital polarization when a bias is applied between the two electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call