Abstract

Experimental evidence of reduction of ultrathin TiO2 by Ti is presented and its effect on Fermi level depinning and contact resistivity reduction to Si is experimentally studied. A low effective barrier height of 0.15 V was measured with a Ti/10 Å TiO2−x/n-Si MIS device, indicating 55% reduction compared to a metal/n-Si control contact. Ultra-low contact resistivity of 9.1 × 10−9 Ω-cm2 was obtained using Ti/10 Å TiO2−x/n+ Si, which is a dramatic 13X reduction from conventional unannealed contacts on heavily doped Si. Transport through the MIS device incorporating the effect of barrier height reduction and insulator conductivity as a function of insulator thickness is comprehensively analyzed and correlated with change in contact resistivity. Low effective barrier height, high substrate doping, and high conductivity interfacial layer are identified as key requirements to obtain low contact resistivity using MIS contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.