Abstract
We have demonstrated a new description of local electronic structure in the perovskite-like bismuthates Ba1−x K x BiO3 (BKBO) based on existence of the spatially separated Fermi-Bose mixture. We have shown that two types of charge carriers: the local electron pairs (real-space bosons) and the itinerant electrons exist in metallic compound Ba1−x K x BiO3 (x ≥ 0.37). The real-space bosons are responsible for both charge transport in semiconducting BaBiO3 and superconductivity in metallic BKBO, while the fermionic subsystem is responsible for the observed metal-insulator phase transition and appearance of the Fermi-liquid state when the percolation threshold is overcome (x ≥ 0.37). Bosons and fermions occupy different types of the octahedral BiO6 complexes, so they are separated in real space. This scenario fits well into a new quantum state of pair-density wave (PDW), actively discussed for copper-based HTSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.