Abstract

A parameter-free local-density method called the \ensuremath{\Xi} method was developed earlier for atoms [N. Vaidehi and M. S. Gopinathan, Phys. Rev. A 29, 1679 (1984)]. This method, which considered only the Fermi correlation in the potential, was shown to be close to Hartree-Fock accuracy. Its relativistic extension [V. Selvaraj and M. S. Gopinathan, Phys. Rev. A 29, 3007 (1984)] was also shown to give results that were close to Dirac-Hartree-Fock accuracy. In the present article, the relativistic \ensuremath{\Xi} method is modified by incorporating the spin-orbit interaction term in the Hamiltonian and the Coulomb correlation between the electrons of opposite spin. Using this fully correlated relativistic method, total energy, expectation values of ${r}^{n}$ (n=-1,1,2), and spin-orbit parameters for various atoms are calculated. Correlation energies for all the atoms in the Periodic Table are reported. Ionization energy and electron affinity of atoms are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.