Abstract

Waste-dependent fermentative routes for biohydrogen production present a possible scenario to produce hydrogen gas on a large scale in a sustainable way. Cheese whey contains a high portion of organic carbohydrate and other organic acids, which makes it a feasible substrate for biohydrogen production. In the present review, recent research progress related to fermentative technologies, which explore the potentiality of cheese whey for biohydrogen production as an effective tool on a large scale, has been analyzed systematically. In addition, application of multiple response surface methodology tools such as full factorial design, Box-Behnken model, and central composite design during fermentative biohydrogen production to study the interactive effects of different bioprocess variables for higher biohydrogen yield in batch, fed-batch, and continuous mode is also discussed. The current paper also emphasizes computational fluid dynamics-based simulation designs, by which the substrate conversion efficiency of the cheese whey-based bioprocess and temperature distribution toward the turbulent flow of reaction liquid can be enhanced. The possible future developments toward higher process efficiency are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.