Abstract

NaCl plays an important role in table olive processing affecting the flavour and microbiological stability of the final product. However, consumers demand foods low in sodium, which makes necessary to decrease levels of this mineral in fruits. In this work, the effects of diverse mixtures of NaCl, CaCl 2 and KCl on the fermentation profiles of cracked directly brined Manzanilla-Aloreña olives, were studied by means of response surface methodology based in a simplex lattice mixture design with constrains. All salt combinations led to lactic acid processes. The growth of Enterobacteriaceae populations was always limited and partially inhibited by the presence of CaCl 2. Only time to reach half maximum populations and decline rates of yeasts, which were higher as concentrations of NaCl or KCl increased, were affected, and correspondingly modelled, as a function of salt mixtures. However, lactic acid bacteria growth parameters could not be related to initial environmental conditions. They had a longer lag phase, slower growth and higher population levels than yeasts. Overall, the presence of CaCl 2 led to a slower Enterobacteriaceae and lactic acid bacteria growth than the traditional NaCl brine but to higher yeast activity. The presence of CaCl 2 in the fermentation brines also led to higher water activity, lower pH and combined acidity as well as a faster acidification while NaCl and KCl had fairly similar behaviours. Apparently, NaCl may be substituted in diverse proportions with KCl or CaCl 2 without substantially disturbing water activity or the usual fermentation profiles while producing olives with lower salt content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.