Abstract

Sugarcane bagasse and chicken manure were anaerobically fermented to carboxylic acids using a mixed culture of marine microorganisms at 55 degrees C. Using the MixAlco process--an example of consolidated bioprocessing--the resulting carboxylate salts can be converted to mixed alcohol fuels or gasoline. To enhance digestibility, sugarcane bagasse was lime pretreated with 0.1 g Ca(OH)(2)/g dry biomass at 100 degrees C for 2 h. Four-stage countercurrent fermentation of 80% sugarcane bagasse/20% chicken manure was performed at various volatile solids (VS) loading rates and liquid residence times. Calcium carbonate was used as a buffer during fermentation. The highest acid productivity of 0.79 g/(L day) occurred at a total acid concentration of 21.5 g/L. The highest conversion (0.59 g VS digested/g VS fed) and yield (0.18 g total acids/g VS fed) occurred at a total acid concentration of 15.5 g/L. The continuum particle distribution model (CPDM) predicted the experimental total acid concentrations and conversions at an average error of 10.14% and 12.68%, respectively. CPDM optimizations show that high conversion (>80%) and total acid concentration of 21.3 g/L are possible with 300 g substrate/(L liquid), 30 days liquid residence time, and 3 g/(L day) solid loading rate. Thermophilic fermentation has a higher acetate content (approximately 63 wt%) than mesophilic fermentation (approximately 39 wt%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call