Abstract

BackgroundWhey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation.ResultsWe metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively.ConclusionsTo our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

Highlights

  • Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste

  • Whey permeate (WP) can be concentrated to facilitate its transportation to treatment plants, obtaining concentrated whey permeate (CWP) that can have a lactose concentration up to about 160 g/l

  • We show that the selected engineered microbe is able to efficiently ferment WP and CWP, without nutritional supplements, in pHcontrolled bioreactor

Read more

Summary

Introduction

Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Whey composition depends on several factors (e.g., milk quality, animal breed and feed), a high lactose concentration (about 45 g/l), and about 6–10 g/l of Worldwide, 160 million tons of whey per year are produced [2]. It represents an environmental problem for its high nutritional load, largely due to lactose content, and, for this reason, it cannot be discharged in water systems without pre-treatments [3]. Ethanol can be used as a fuel, and in food and beverages, pharmaceutical and cosmetic industries

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call