Abstract

AbstractLucerne (Medicago sativa L.) requires four or more cuttings at early bud stage per growing season to optimize the amount of crude protein and digestible fibre for feeding high‐producing dairy cows. However, there is potential to generate a nutrient‐dense feed from lucerne regardless of developmental stage by harvesting its protein‐rich leaves separate from its fibrous stems. In order to determine whether fractionated lucerne can be effectively ensiled under high‐moisture conditions and be nutritionally competitive with wilted whole‐plant silage, leaf and stem fractions, harvested at three developmental stages (early bud, 10%–20% bloom and >50% bloom), were directly ensiled in mini‐silos. At day 0, 1, 3, 21 and 140 of ensiling, silages were analysed for protein and non‐protein nitrogen fractions as well as their fermentation products and carbohydrate composition. Silages from unwilted leaves and stems were more heterofermentative than wilted whole‐plant silages; their fermentation shifted from primarily lactic acid to acetic acid production after 21 days. In leaf silages, the high degree of protein degradation into non‐protein nitrogen (~55%) was most likely due to fermentation quality. Nevertheless, at 140 days of ensiling, leaf silages had 21%–25% higher (p < 0.01) available protein (peptide amino acids, soluble and insoluble protein) content than wilted whole‐plant silages, regardless of developmental stage. Achievement of a more rapid pH decline and improved fractionation may further increase the nutritional value of leaf silages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call