Abstract

Resistant starches are non-digestible starches that are fermented in the colon by microbiota. These carbohydrates are prebiotic and can be beneficial to consumer health. Many types of resistant starch exist with varying physical properties that may result in differences in fermentability. The objective of this research project was to compare potential prebiotic effects and fermentability of four novel resistant starches using an in vitro fermentation system and measuring changes in total gas production, pH, and formation of SCFAs (short chain fatty acids). Fecal donations were collected from seven healthy volunteers. Four novel resistant starches, modified potato starch (MPS), modified tapioca starch (MTS), and modified maize starches (MMS-1 and MMS-2), were analyzed and compared to polydextrose and short chain fructooligosaccharides (FOS) as controls. After twenty-four hours of fermentation, MPS and MTS responded similarly in gas production (74 mL; 70.6 mL respectively), pH (5.93; 5.93 respectively), and SCFA production (Acetate: 115; 124, Propionate: 21; 26, Butyrate: 29; 31 μmol/mL respectively). While MMS-1 had similar gas production and individual SCFA production, the pH was significantly higher (6.06). The fermentation of MMS-2 produced the least amount of gas (22 mL), with a higher pH (6.34), and lower acetate production (78.4 μmol/mL). All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.

Highlights

  • The importance of dietary fiber for human health is well documented [1], yet average fiber consumption in the United States is well below the recommended Adequate Intake of 25 g/day for women and 38 g/day for men [2]

  • This paper aims to compare the fermentability of four novel resistant starches using an in vitro fermentation system measuring changes in total gas production, pH, and formation of common short chain fatty acids (SCFA)

  • Four resistant starches were chosen for this study (Table 1), including modified potato starch (MPS), modified tapioca starch (MTS), and modified maize starches (MMS-1 and Modified Maize Starch-2 (MMS-2)), which were compared to polydextrose, a slowly fermented carbohydrate control, and short chain fructooligosaccharides (FOS), a rapidly fermented carbohydrate control

Read more

Summary

Introduction

The importance of dietary fiber for human health is well documented [1], yet average fiber consumption in the United States is well below the recommended Adequate Intake of 25 g/day for women and 38 g/day for men [2]. The addition of dietary fiber to food products may be an effective way to increase fiber intake in consumers. Announced a change in the definition of fiber beyond non-digestible carbohydrates of three or more monosaccharide units long [3]. The FDA has proposed that isolated and synthetic non-digestible carbohydrates must have a proven physiologic benefit to human health to be considered and labeled as dietary fiber [3]. Resistant starches are among several non-digestible carbohydrates being considered as dietary fiber sources by the FDA [4]. Resistant starches are starches that are not able to be digested by enzymes in the small intestine and are fermented in the colon by microbiota [5]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.