Abstract
AbstractWe prove Fermat’s Last Theorem over $\mathbb {Q}(\sqrt {5})$ and $\mathbb {Q}(\sqrt {17})$ for prime exponents $p \ge 5$ in certain congruence classes modulo $48$ by using a combination of the modular method and Brauer–Manin obstructions explicitly given by quadratic reciprocity constraints. The reciprocity constraint used to treat the case of $\mathbb {Q}(\sqrt {5})$ is a generalization to a real quadratic base field of the one used by Chen and Siksek. For the case of $\mathbb {Q}(\sqrt {17})$ , this is insufficient, and we generalize a reciprocity constraint of Bennett, Chen, Dahmen, and Yazdani using Hilbert symbols from the rational field to certain real quadratic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.