Abstract

Feral pig populations are expanding in many regions of the world following historically recent introductions. Populations are controlled to reduce damage to agriculture and the environment, and are also a recreational hunting resource. Knowledge of the area over which feral pigs may expand in the future could be used regionally to assist biosecurity planning, control efforts and the protection of biodiversity assets. The present study sought to estimate the future distribution of a recently introduced, expanding feral pig population in the remote Kimberley region of north-western Australia. An existing survey of feral pig distributions was enhanced and remote-sensing and weather data, reflecting or correlated with factors that may affect feral pig distributions, were collated and analysed. Relationships between feral pig distributions and these data were identified by using a generalised additive modelling approach. By the use of the model, the distribution of favourable habitat was estimated across the study region (89 125 km2). The potential future distribution of feral pigs in the Kimberley was then estimated, assuming only natural dispersal of feral pigs from areas of known feral pig status (cf. hunter-assisted movements or escape of domestic pigs). The modelling suggests that feral pigs could expand their distribution by realistic natural dispersal in the future (to 61 950 km2). This expansion possibility contains several strategically important areas (such as sea ports and biologically significant wetlands). This approach has the potential to improve biosecurity planning for the containment of the feral pig in the Kimberley and may have utility for other recently introduced invasive species in other regions. These results may also be used to improve pest-management programmes and contingency planning for exotic-disease incursions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call