Abstract

Highly efficient oxidation, as non-thermal regeneration technology, is a promising method to solve the regeneration problem of spent activated carbon (AC) in wastewater treatment. In this study, FeOCl was confined into activated carbon (FeOCl/AC) for catalytic oxidation of contaminants on AC during the regeneration process. The characterization results of FeOCl/AC showed that amorphous FeOCl was distributed in micropores, mesopores and macropores of AC. The methylene blue (MB)-adsorbed FeOCl/AC had a regeneration efficiency of 93.7 % at neutral pH in the presence of H2O2, much higher than 46.9 % by Fenton oxidation and 33.7 % by H2O2 oxidation. Meanwhile, the spent FeOCl/AC after the adsorption of atrazine, 2,4-dichlorophenol, and ofloxacin had the regeneration efficiencies of 71.5 %, 86.4 %, and 100 %, respectively. Moreover, the regeneration efficiency still reached 87 % in the fifth adsorption-regeneration cycle, and was linearly decreased with the increase of adsorbed amounts of MB. During 6h regeneration of spent FeOCl/AC, 97 % of adsorbed MB was degraded. Electron paramagnetic resonance and radical trapping experiments indicated that both superoxide and hydroxyl radicals were involved in MB oxidation during the regeneration process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.