Abstract

Solar-driven catalysis is a promising strategy for transforming CO2 into fuels and valuable chemical feedstocks, with current research focusing primarily on increasing CO2 conversion efficiency and product selectivity. Herein, a series of FeO–CeO2 nanocomposite catalysts were successfully prepared by H2 reduction of Fe(OH)3-Ce(OH)3 precursors at temperatures (x) ranging from 200 to 600 °C (the obtained catalysts are denoted as FeCe-x). An FeCe-300 catalyst with an Fe:Ce molar ratio of 2:1 demonstrated outstanding performance for photothermal CO2 conversion to CO in the presence of H2 under Xe lamp irradiation (CO2 conversion, 43.63%; CO selectivity, 99.87%; CO production rate, 19.61 mmol h−1 gcat−1; stable operation over 50 h). Characterization studies using powder X-ray diffraction and high-resolution transmission electron microscopy determined that the active catalyst comprises FeO and CeO2 nanoparticles. The selectivity to CO of the FeCe-x catalysts decreased as the reduction temperature (x) increased in the range of 300–500 °C due to the appearance of metallic Fe0, which introduced an additional reaction pathway for the production of CH4. In situ diffuse reflectance infrared Fourier transform spectroscopy identified formate, bicarbonate and methanol as important reaction intermediates during light-driven CO2 hydrogenation over the FeCe-x catalysts, providing key mechanistic information needed to explain the product distributions of CO2 hydrogenation on the different catalysts.

Highlights

  • Modern societies are highly dependent on fossil fuel energy for electricity generation and transportation

  • The final products are denoted as FeCe-x, where x refers to the reduction temperature

  • When the reduction temperature was increased above 400 °C, peaks due to metallic Fe0 appeared (44.7 and 65.0°, JCPDS-65-4899), while the

Read more

Summary

Introduction

Modern societies are highly dependent on fossil fuel energy for electricity generation and transportation. Combustion of fossil fuels for energy releases CO2 into the atmosphere, thereby causing global warming and a plethora of associated environmental problems[1,2,3]. As a form of CO2 sequestration, these catalytic approaches are desirable, as they can generate economic value from CO2 (thereby transforming CO2 into a resource rather than an environmental problem requiring mitigation)[1,4,9]. A further challenge with CO2 reduction is achieving high selectivity for a specific product, which is highly desirable since it eliminates the need for separation of different reaction products. Most catalytic technologies for CO2 reduction developed to date are based on hydrogenation approaches, which typically utilize the Sabatier

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.