Abstract

Herein, an approach is reported for the fabrication of 3D carbon nanofibers (CNFs) wrapped by carbon nanotubes (CNT) with graphitic carbon-encased FeNx nanoparticles originated from metal–organic frameworks (MOFs). It is found that Fe-FeNx@N-CNT/CNFs exhibits outstanding catalytic activity towards ORR, whose half-wave potential are 0.89 V and 0.87 V in alkaline and neutral environments, respectively, much higher than MOF-based catalysts reported so far and commercial Pt/C. When the obtained cathode catalysts are loaded in MFCs for power generation test, the experimental consequences show that the Fe-FeNx@N-CNT/CNFs cathode exhibits a supernal power density of 742.26 mW·m−2 and output current density of 3241 mA·m−2 which are comparable to Pt/C. The splendid ORR catalytic performance is mainly attributable to the three-dimensional structure of carbon nanofibers and the active sites of Fe-Nx. These result in a higher graphitization degree beneficial for electronic mobility, high specific surface area, benign mesoporous nanostructure and excellent mass transfer capability. The strategy provides a new scheme to devise and research Fe-Nx electrocatalysts with MOF-based for the conversion of clean and environment-friendly energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call