Abstract

Even though various Pt-free electrocatalysts for oxygen reduction reaction (ORR) have been introduced, many of them are found to be active only in alkaline conditions. Considering Nafion, phosphoric acid-doped polybenzimidazole (PBI), and so on as the prominent ionomer membranes, used in the commercially available polymer electrolyte membrane fuel cells (PEMFCs), it becomes important that any development on the Pt-free catalysts should ensure the better ORR performance under acidic conditions. The present work effectively tackles this issue, where an ORR-based catalyst could be prepared with simultaneous incorporation of both Fe–N and Fe–S active sites on in situ generated carbon sheets which are spatially separated by the carbon nanotube (CNT) network. This catalyst shows ability to perform under both acidic and basic conditions. This has been achieved by growing a polyethylenedioxythiophene polymer network in the presence of CNT and melamine followed by its pyrolysis under an inert atmosphere. The catalyst formed at 900 °C (PMCNT-900) displays 0.94 V onset potential for ORR under acidic electrolyte conditions, which corresponds to 60 mV overpotential compared to its 40 wt % Pt/C counterpart. Interestingly, in single cell demonstration of Nafion-based PEMFC with PMCNT-900 as the cathode catalyst, the system delivered a maximum power density (PD) of 500 and 275 mW/cm2 at 60 °C under H2–O2 and H2–air feed conditions, respectively. On the other hand, in a single cell test in the anion exchange membrane fuel cell (AEMFC) mode, a maximum power density of 65 mW/cm2 at 50 °C could be achieved with the same cathode catalyst, which is a comparable value obtained while employing Pt/C as the cathode. These results, thus, infer to the efficiency of the catalyst to facilitate ORR under the extreme pH conditions, and particularly its performance under acidic condition reveals its prospect as a potential Pt-free electrocatalyst to serve in the Nafion-based systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.