Abstract
The adsorption isotherms of fenuron (l, l‐dimethyl‐3‐phenylurea) on three smectites (SWy and SAz montmorillonites and SH hectorite) differing in their layer charge (SH<SWy<SAz) and saturated with several inorganic and organic cations were determined. The isotherms and sorption parameters from Freundlich equation indicate low adsorptivity on inorganic clays, but medium sorption in organoclays (OCls). Fenuron adsorption on homoionic smectites increases with decreasing layer charge and hydratation power of the inorganic exchangeable cation (except Fe3+), indicating that fenuron adsorbs as neutral molecule on uncharged siloxane surface by hydrophobic bonding, with some contribution of polar bond (fenuron C=O group and water associated to exchangeable cation). In the case of Fe3+‐saturated smectite fenuron protonation, provided by the interlayer acidic environment, promotes further sorption of fenuron as cationic form. The sorption on organoclays is enhanced via hydrophobic interaction with organocations, which is favoured for high layer charge and basal spacing and organocation saturation close to CEC. Quaternary alkylamonium is more efficient in high layer charge smectite, whereas primary alkylammonium is more efficient in medium charge smectite. The low values of the maximum sorption obtained with homoionic inorganic and organic smectites (100 and 5000 μmol/Kg) represent one fenuron molecule for each 2000–200 exchange sites and indicate that fenuron sorption is mainly associated to the outer exchange sites. This low adsorptivity of fenuron, as consequence of its high water affinity (high water solubility) would suggest high mobility of fenuron in natural soil and water systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.