Abstract

In this work, the effect of Fenton's reagent on the degradation of residual Kraft black liquor was investigated. The effect of Fenton's reagent on the black liquor degradation was dependent on the concentration of H2O2. At low concentrations (5 and 15 mM) of H2O2, Fenton's reagent caused the degradation of phenolic groups (6.8 and 44.8%, respectively), the reduction of reaction medium pH (18.2%), and the polymerization of black liquor lignin. At a high concentration (60 mM) of H2O2, Fenton's reagent induced an extensive degradation of lignin (95-100%) and discoloration of the black liquor. In the presence of traces of iron, the addition of H2O2 alone induced mainly lignin fragmentation. In conclusion, Fenton's reagent and H2O2 alone can degrade residual Kraft black liquor under acidic conditions at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.