Abstract
Triose sugar, 1,3-dihydroxy acetone (DHA) on treatment with Fenton's reagent releases CO under physiological conditions. The release of CO has been demonstrated by myoglobin assay and quantum chemical studies. The mechanistic study has been carried out using B3LYP/6-311++G(d,p), M06-2X/6-311++G(d,p) and CCSD(T)//M06-2X/6-311++G(d,p) level of theories in aqueous medium with dielectric constant of 78.39 by employing the polarized continuum model (PCM). The theoretical investigation shows that DHA breaks down completely into 2 equiv of CO, 1 equiv of CO2, and 6 equiv of H2O without formation of toxic metabolites. The activation barriers of some steps are as high as ∼50 kcal mol-1 along with barrierless intermediate steps resulting from highly stabilized intermediates. The quantum tunneling mechanism of proton transfer steps has been confirmed through kinetic isotope effect study. The natural bond orbital analysis is consistent with the proposed mechanism. The present protocol does not require any photoactivation and thus it can serve as a promising alternative to transition metal CO-releasing molecules. The present work can initiate the study of carbohydrates as CO-releasing molecules for therapeutic applications and it could also be useful in generation of CO for laboratory applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.