Abstract

The authors tested the hypothesis that the intravenous anesthetic fentanyl would attenuate the pulmonary vasoconstrictor response to alpha1-adrenoceptor activation. They also investigated the alpha1-adrenoceptor subtypes that could potentially mediate this effect of fentanyl. Endothelium-denuded canine pulmonary arterial rings were suspended for isometric tension recording. Dose-response curves for the alpha1-adrenoceptor agonist phenylephrine were generated in the absence and presence of fentanyl. The effects of inhibiting alpha2 (rauwolscine), alpha1 (prazosin), alpha1A (5-methylurapidil), alpha1B (chloroethylclonidine), and alpha1D (BMY 7378) adrenoceptors on phenylephrine contraction were also investigated. Receptor "protection" studies were performed to investigate the specific role of alpha1B adrenoceptors in mediating fentanyl-induced changes in phenylephrine contraction. Finally, competition binding studies were performed in rat-1 fibroblasts stably transfected with human alpha1-adrenoceptor complementary DNAs corresponding to the alpha1A-, alpha1B-, or alpha1D-adrenoceptor subtypes to directly assess whether fentanyl can compete for the alpha1-adrenoceptor activation pocket. Fentanyl attenuated phenylephrine contraction in a dose-dependent fashion. Rauwolscine had no effect on phenylephrine contraction. Phenylephrine contraction was inhibited by prazosin and abolished by chloroethylclonidine but was relatively resistant to inhibition by 5-methylurapidil and BMY 7378. Pretreatment with fentanyl before exposure to chloroethylclonidine increased the maximal contractile response to phenylephrine compared to chloroethylclonidine pretreatment alone. Competition binding studies revealed that fentanyl binds to all three alpha1-adrenoceptor subtypes, with a fivefold greater affinity for the alpha1B-adrenoceptor compared with the alpha1D-adrenoceptor subtype. Phenylephrine-induced contraction is primarily mediated by alpha1B-adrenoceptor activation in canine pulmonary artery. Fentanyl attenuates phenylephrine contraction by binding to alpha1B adrenoceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.