Abstract

The aim of this work is to present a pollutants dispersion transient model in low wind conditions to simulate the behavior of the pollutants plume in the atmosphere, considering in the model the u e v horizontal wind components simulated by the LES-PALM model. The dispersion model is based in the advection-diffusion equation and represent by this methodology the wind meandering phenomenon. The Generalized Integral Laplace Transform Technique in three dimensions (3D- GILTT) solves the transient advection-diffusion equation. The data utilized to initialize the simulations are data of the low wind INEL (Idaho National Engineering Laboratory) experiment accomplished in EUA. The results show that the dispersion model reproduces the wind meandering phenomenon, in other words, the autocorrelation function of the concentration simulated over an hour presents the negative lobule, similarly to observed lobules in the u and v wind components. Therefore, the model simulates the pollutants plume in a satisfactory way and can be used to air quality regulatory applications in low wind and wind meandering conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.