Abstract

Water electrolysis is a promising sustainable technology for hydrogen production. To achieve large-scale commercialization, electrocatalysts must meet specific performance requirements, such as low cost, high durability, and the ability for high-yield and high-quality production on a macroscopic scale. This study focuses on the preparation of self-supported electrodes for water splitting using stainless steel (SS) as the conductive carrier of the catalytic electrode. In alkaline conditions, FeNi-LDH@Ni films were grown on the surface of stainless steel, resulting in efficient and stable electrodes (FeNi-LDH@Ni/SS). The electrodes exhibited low overpotentials of 399 mV and 212 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, to reach a current density of 10 mA cm−2. Amplified electrodes with a surface area of 1 dm2 were tested in an industrial environment of 6 M KOH at 60 °C. The two-electrode alkaline water electrolyzers (AWE) composed of the two FeNi-LDH@Ni/SS electrodes demonstrated excellent stability for 100 h and required only 1.744 V to reach a current density of 10 mA cm−2. This study provides insight into the development of stable, efficient, and low-cost electrodes for industrial water splitting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.