Abstract

Many techniques were developed for creating true color images from satellite solar reflective bands, and the so-derived images have been widely used for environmental monitoring. For the newly launched Fengyun-3D (FY-3D) satellite, the same capability is required for its Medium Resolution Spectrum Imager-II (MERSI-II). In processing the MERSI-II true color image, a more comprehensive processing technique is developed, including the atmospheric correction, nonlinear enhancement, and image splicing. The effect of atmospheric molecular scattering on the total reflectance is corrected by using a parameterized radiative transfer model. A nonlinear stretching of the solar band reflectance is applied for increasing the image contrast. The discontinuity in composing images from multiple orbits and different granules is eliminated through the distance weighted pixel blending (DWPB) method. Through these processing steps, the MERSI-II true color imagery can vividly detect many natural events such as sand and dust storms, snow, algal bloom, fire, and typhoon. Through a comprehensive analysis of the true color imagery, the specific natural disaster events and their magnitudes can be quantified much easily, compared to using the individual channel data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.