Abstract

Giant nerve fibers of the shrimp family Penaeidae conduct impulses at the velocity highest among all animal species (approximately 210 m/s; highest in mammals = 120 m/s). We examined these giant and other small nerve fibers morphologically using a differential interference contrast microscope as well as an electron microscope, and found a very specialized form of excitable membrane that functions as a node for saltatory conduction of the impulse. This node appeared under the light microscope as a characteristic pattern of concentrically aligned rings in a very small spot of the myelin sheath. The diameter of the innermost ring of the node was about 5 microns, and the distance between these nodes was as long as 12 mm. Via an electron microscope, these nodes were characterized by a complete lack of the myelin sheath, forming a fenestration that has a tight junction with an axonal membrane. Voltage clamp measurements by a sucrose gap technique demonstrated that the axonal membrane at these fenestration nodes is exclusively excitable and that the large submyelinic space is a unique conductive pathway for loop currents for saltatory conduction through such fenestration nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.