Abstract

Go is a production-level statically typed programming language whose design features explicit message-passing primitives and lightweight threads, enabling (and encouraging) programmers to develop concurrent systems where components interact through communication more so than by lock-based shared memory concurrency. Go can only detect global deadlocks at runtime, but provides no compile-time protection against all too common communication mismatches or partial deadlocks. This work develops a static verification framework for bounded liveness and safety in Go programs, able to detect communication errors and partial deadlocks in a general class of realistic concurrent programs, including those with dynamic channel creation and infinite recursion. Our approach infers from a Go program a faithful representation of its communication patterns as a behavioural type. By checking a syntactic restriction on channel usage, dubbed fencing, we ensure that programs are made up of finitely many different communication patterns that may be repeated infinitely many times. This restriction allows us to implement bounded verification procedures (akin to bounded model checking) to check for liveness and safety in types which in turn approximates liveness and safety in Go programs. We have implemented a type inference and liveness and safety checks in a tool-chain and tested it against publicly available Go programs. Updated on 27th Feb 2017. See Comments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.