Abstract

Efficient, accurate and reliable segmentation of femurs from CT-scans is of major importance for patient-specific autonomous finite element analysis (AFE) to determine bone's stiffness and strength. We present a fully automated segmentation algorithm for whole and partial femurs with or without tumors, and clinical applications of the AFE [1] in clinical practice.The segmentation is based on an U-Net convolutional neural network, resulting a 3D mask representing the desired femur in a CT scan. It is robust, independent of the scanning parameters such as slice spacing, pixel size, scanner manufacturer or the femoral length available in the scan. The U-Net was trained on 178 manually segmented femurs (23,721 images) and tested on 43. The performance evaluation resulted in a Dice similarity score (DSC) of 0.9924, intersection over union (IoU) of 0.9849, Hausdorff distance of 4.3315 mm and symmetric average surface distance (ASD) of 0.1326 mm. The algorithm is competitive with the best state-of-the-art femoral segmentation methodologies available.Based on the segmentation an automatic p-FE mesh is generated and physiological boundary conditions representing sidewise falls or stance are being applied automatically to improve the performance of the AFE described in [1]. New examples of the usage of the AFE in endocrinology and orthopedic oncology demonstrate this disruptive technology in actual clinical practice. We present the use of AFE for predicting hip fracture risk in the elderly population due to a sidewise fall and the identification of patients who require a prophylactic surgery due to metastatic tumors in their femurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call