Abstract

In-vivo estimates of the positions of knee ligament attachment sites are crucial for subject-specific knee modelling. The present study provides template digital models of femur, tibia and fibula that embed the positions of centroids of the origins and insertions of cruciate and collateral ligaments, along with information on their dispersion related to inter-individual variability. By using a shape transformation procedure of choice, these templates can be made to match anatomical information measured on a subject under analysis. Generic bone digital models of the femur, tibia and fibula were first chosen as bone templates. Ligament attachment areas were accurately identified through dissection on the bones of 11 knee specimens, and marked using radio opaque paint. Digital models of these bones embedding the positions of the centroids of the identified ligament attachment areas were thereafter obtained using medical imaging techniques. These centroids were mapped onto the relevant bone template, thus obtaining a cloud of 11 points for each attachment site, and descriptive statistics of the position of these points were thereafter determined. Dispersion of these positions, essentially due to inter-individual variability, was below 6mm for all attachment areas. The accuracy with which subject-specific ligament attachment site positions may be estimated using the bone template models provided in this paper was also assessed using the above-mentioned 11 specimens data set, and a leave-one-out cross validation approach. Average accuracy was found to be 3.3±1.5mm and 5.8±2.9mm for femoral and tibial/fibular attachment sites, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.