Abstract

We describe a new technique, femtosecond transillumination optical coherence tomography, for time-gated imaging of objects embedded in scattering media. Time gating is performed with a fiber-optic interferometer with femtosecond pulses and coherent heterodyne detection to achieve a 130-dB dynamic range. A confocal imaging arrangement provides additional spatial discrimination against multiply scattered light. By time gating ballistic photons, we achieve 125-microm-resolution images of absorbing objects in media 27 scattering mean free paths thick. We derive a fundamental limit on ballistic imaging thickness based on quantum noise considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call