Abstract

The photophysics of a thermally activated delayed fluorescence (TADF) emitting macrocycle consisting of two dibenzo[a,j]phenazine acceptor moieties bridged by two N,N,N',N'-tetraphenylene-1,4-diamine donor units was scrutinized in solution by steady-state and time-resolved spectroscopy. The fluorescence lifetime of the compound proved to be strongly solvent-dependent. It ranges from 6.3 ns in cyclohexane to 34 ps in dimethyl sulfoxide. In polar solvents the fluorescence decay is predominantly due to internal conversion. In non-polar ones radiative decay and intersystem crossing contribute. Contrary to the behaviour in polymer matrices (S. Izumi et al., J. Am. Chem. Soc. 2020, 142, 1482) the excited state decay is not predominantly due to prompt and delayed fluorescence. The solvent-dependent behaviour is analyzed with the aid of quantum chemical computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.