Abstract
Numerical calculations of pump−probe signals corresponding to excited-state absorption of the molecular state are presented. The molecular excited-state decays due to ultrafast electron injection into a continuum of electronic states (semiconductor levels) and the model calculations take into account the consequent molecular reorganization. A time-dependent Schrodinger wave equation approach is utilized to model the pump−probe dynamics. The continuum of semiconductor states, namely, its conduction-band levels, is described by an expansion in terms of orthogonal polynomials. It is shown that excited-state dynamics, including information on the modulation of population transfer due to vibrational coherences, can be unambiguously deduced from the pump−probe signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.