Abstract

The photoisomerization reaction of the visual pigment analogue 11-cis-13-demethylrhodopsin is investigated using femtosecond pump−probe techniques. Following excitation with a 40-fs pump pulse at 500 nm, differential transient absorption spectra are measured from 470 to 560 nm using a 10-fs probe pulse centered at 500 nm and from 560 to 650 nm using a 10-fs probe pulse centered at 620 nm. The persistence of the excited-state absorption, the recovery kinetics of the ground-state bleach, and the formation time of the photoproduct absorption all indicate that this photoisomerization reaction is complete on the 400-fs time scale. Comparison of the reaction dynamics of 11-cis-rhodopsin with 11-cis-13-demethylrhodopsin suggests that the removal of the nonbonded steric interaction between the C13-methyl group and the C10-hydrogen atom slows down the initial torsional dynamics and that this in turn results in a lower isomerization quantum yield and a slower overall reaction time. Our results support the hypothesi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.