Abstract

Relaxation of photoexcited states in nanosized semiconductor particles of iron oxides was studied by femtosecond laser photolysis techniques: (1) in an aqueous colloidal solution of α-Fe2O3; (2) in Fe2O3 particles in the Nafion® cation-exchange polymeric membrane; (3) in an aqueous colloid of γ-Fe2O3; and (4) in nanocrystals of ferrihydrite 5Fe2O3·9H2O, which are contained in the protein shell of ferritine. The photoinduced excited states relax at the femtosecond and picosecond time scale. The spectra of photoinduced absorption of photoexcited states and the relaxation dynamics in the studied iron oxides weakly depend on the structure and surface environment of a nanoparticle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.