Abstract

The ultrafast relaxation dynamics of the well-known solvated electron in liquid ammonia solutions are investigated with femtosecond near-infrared pump-probe absorption spectroscopy. Immediately after photoexcitation, the dynamic absorption spectrum of the electron is substantially red-shifted with respect to its stationary spectrum. A subsequent dynamic blue shift of the pump-probe spectrum occurs on a timescale of 150 fs. The data are understood in terms of ground-state "cooling" and can be quantitatively simulated by an intuitive temperature-jump model employing a dynamically evolving Kubo line shape for the electronic resonance. A simple estimate implies that, on average, the electron in the liquid is coordinated to six nearest-neighbor ammonia molecules. An equivalent analysis of the data based on a bubble-formation/cavity-contraction mechanism is briefly outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.