Abstract
The photodissociation of two acyl cyanide compounds, R–C(O)–CN, where R=methyl and tert-butyl groups, has been investigated using femtosecond time-resolved laser-induced fluorescence (LIF) spectroscopy. Both compounds were excited by two-photon excitation at a total energy of ∼6.4 eV and the formation of the free CN(X) radical products was probed in real time by monitoring the CN X→B LIF signal. The results revealed that the temporal evolution of the CN(X) formation can be well characterized by delayed biexponential rise functions with time constants in the picosecond time scale, indicating that the dissociation occurs via a complex-mode mechanism. We proposed a dissociation mechanism involving two discernable stages to account for the observed temporal behaviors as well as previous photofragment translational spectroscopic results reported by other groups. Our analyses suggested that the selectivity between the C–CN and C–R bond cleavage is determined by the competition between the adiabatic and nonadiabatic dynamics of the S2 state. The results also indicated that the adiabatic dissociation process occurring on the S2 surface is not statistical. We speculate that this nonstatistical dissociation behavior is due to an initial nonuniform phase space distribution and a slow intramolecular vibrational energy redistribution process that prevents the system from sampling the entire phase space before the reaction completes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.