Abstract

Femtosecond primary events in bacteriorhodopsin (BR) and its retinal modified analogs are discussed. Ultrafast time resolved electronic spectra of the primary intermediates induced in the BR photocycle are discussed along with spectral and kinetic inconsistencies of the previous models proposed in the literature. The theoretical model proposed in this paper based on vibrational coupling between the electronic transition of the chromophore and intramolecular vibrational modes allows us to calculate the equilibrium electronic absorption band shape and the hole burning profiles. The model is able to rationalize the complex pattern of behavior for the primary events in BR and explain the origin of the apparent inconsistencies between the experiment and the previous theoretical models. The model presented in the paper is based on the anharmonic coupling assumption in the adiabatic approximation using the canonical transformation method for diagonalization of the vibrational Hamiltonian instead of the commonly used perturbation theory. The electronic transition occurs between the Born-Oppenheimer potential energy surfaces with the electron involved in the transition being coupled to the intramolecular vibrational modes of the molecule (chromophore). The relaxation of the excited state occurs by indirect damping (dephasing) mechanisms. The indirect dephasing is governed by the time evolution of the anharmonic coupling constant driven by the resonance energy exchange between the intramolecular vibrational mode and the bath. The coupling with the intramolecular vibrational modes results in the Franck-Condon progression of bands that are broadened due to the vibrational dephasing mechanisms. The electronic absorption line shape has been calculated based on the linear response theory whereas the third order nonlinear response functions have been used to analyze the hole burning profiles obtained from the pump-probe time-resolved measurements. The theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the primary events in the BR photocycle that exists in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.